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Ross’s a priori Pathometry — a Perspective

Probably the most important contribution made
by tropical medicine to the theoretical and
methodological corpus of contemporary epi-
demiology is the classic work of Sir Ronald Ross,
published between the years 1904 and 1917, and
called by its author, variously: ‘a theory of
happenings’ (Ross 1911a); ‘a priori pathometry’
(Ross 1915, 1916); or ‘constructive epidemiology’
(Ross 1929).

So bold a praise of this particular work may be
met with a certain scepticism. Ross is better
known to the medical community as the discoverer
of the mosquito transmission of malaria than as
the author of a far-reaching theoretical approach
to the study of disease in populations. Though
many epidemiologists have heard of Ross’s work,
very few contemporary workers are familiar with
it in any detail. Indeed, familiarity is to be gained
only by reading the original papers, as Ross’s
work is rarely cited today, and has not been
reviewed in recent years (with the exception of a
discussion by Serfling in 1952). It is time to
remind ourselves of the historical importance,
the charm and the power of this theoretical
epidemiology of Sir Ronald Ross.

This review will concentrate on four general
points: (1) the background to Ross’s theoretical
work ; (2) its content; (3) its claim to originality;
and (4) its relevance to epidemiological work
today.

Historical Background

Ronald Ross was one of those men of extra-
ordinary talent and self-discipline to emerge
during the Victorian era. Born in 1857 at Almora
in Northern India, he was educated in England,

studying medicine at St Bartholomew’s Hospital
in London. After becoming a licentiate in the

. Society of Apothecaries in 1881, he returned to

the orient as an officer in the Indian Medical
Service. There he spent the following eighteen
years, except for periods in 1888-89, and again
in 1894-95, when he returned to England. On the
second of these visits he met Patrick Manson,
founder of what is now the London School of
Hygiene and Tropical Medicine, who encouraged
Ross to apply himself to the problem of the trans-
mission of malaria. Ross returned to India in
1895, full of enthusiasm for this project, and
after three years of concentrated effort was able
to telegraph to Patrick Manson that he had traced
the life cycle of a malaria parasite through a
mosquito. This was certainly medical adventure
and success on the grandest scale —and led to
Ross’s election to the Royal Society, and to his
receipt of the second Nobel prize in medicine,
awarded in 1902 (Megroz 1931, Ross 1923).

On the other hand, this well-known story does
not do full justice to the complexity of Ronald
Ross the man. Ross was not only a man who
examined mosquitoes — he also wrote and pub-
lished novels, poetry and plays, and composed
music. If such were the pursuits of many cultured
men in that more leisurely era, Ross had a yet
more remarkable trait: a passion for mathe-
matics. Nurtured ever since his school days, and
a constant theme throughout his life, this interest
in mathematics was not just for pleasure; it was
in earnest. Soon after his return to Britain after
his successes in India, Ross published his first of
several papers in pure mathematics, entitled ‘The
Algebra of Space’ (Ross 1901).

During the early years of this century, Ross
waged a constant and often acrimonious battle
for the acceptance of what he called (in what was
perhaps a subtle manifestation of his mathe-
matical turn of mind) his ‘mosquito theorem’
(Ross 1908, &c.). The implication of this theorem,



548 Proc. roy. Soc. Med. Volume 68 September 1975

that mere reduction of mosquito populations in
the field provided a means of preventing malaria
transmission, was clear to Ross, but not im-
mediately so to his contemporaries in the medical
and public health professions. The resistance to
this inference may be difficult for us to under-
stand today. It was a classic example of the diffi-
culty which plagues persons of a qualitative and
descriptive outlook, when confronted with what is
essentially a quantitative problem. The argument
against Ross’s idea took the following form: it is
impossible to totally eradicate the mosquitoes in
an area (Ross admitted this) . .. thus there will
always be some mosquitoes remaining (Ross
admitted this) . . . thus malaria transmission will
continue, and mosquito control is a waste of time
and effort (here Ross disagreed) (Ross 19044, b).
The fallacy in such an argument is clear to one
who is used to thinking in terms of numbers, of
probabilities, of life spans and population
densities. But its fallacy may not be immediately
clear to one whose parasitology consists merely
of the memorization of life cycles. Its refutation
requires a quantitative argument. Perhaps it may
be counted among the happy ironies of history
that no one was in a better position to construct
such an argument than was Ronald Ross, at once
mathematician, and physician, and epidemio-
Jogist. It was the challenge of convincing the
world that mosquito control was a practical
public health undertaking that stimulated Ronald
Ross to develop what came to be called the a
priori pathometry.

Ross’s first attempt at a quantitative argument
on this issue of mosquito control was in a paper
entitled ‘On the logical basis of the sanitary
policy of mosquito reduction’, read at an Inter-
national Congress of Arts and Sciences, in St
Louis, Missouri in 1904. In this paper he developed
what he called a ‘centripetal law of random
wandering’, which described how the control of
mosquitoes in one area affects the absolute size
of the population in neighbouring areas, as the
mobility of individual mosquitoes allows the
population to diffuse into control areas. .

The main importance of this 1904 paper is in
its position as Ross’s first published attempt at
tackling an epidemiological problem in mathe-
matical terms. In it he dealt with only a segment
of the malaria problem, however, as he did not
discuss the relationship of the mosquito popula-
tion size to malaria transmission.

The crucial synthesizing step was taken in 1908,
within a lengthy report prepared by Ross on the
status of malaria control on the island of Mauri-
tius. In this document, we find the first clear
formulation of Ross’s great contribution to
epidemiological methodology. Here the term
‘pathometry’ first appeared, a word later defined

2

as ‘the quantitative study of disease’ (Ross 1928).
In the general discussion section of this report
Ross attempted to specify, and to tie together, all
the major factors responsible for the transmission
and the maintenance of malaria in a human
population. He did this using the medium of a
simple algebraic equation, structured so as to
define the number of new infections of malaria
which should occur within one month. The
equation is as follows:

No. of new infections per month=p-m-i-a-b-s-f(1)

where: p=average population in the locality;
m=average proportion of the population in-
fected; i=proportion of the infected individuals
who are infectious; a=average number of
mosquitoes per person in the locality, per month;
b=proportion of uninfected mosquitoes which
feed on man; s=proportion of mosquitoes
which survive through the extrinsic incubation
period; f=proportion of infectious mosquitoes
which feed on man.

This simple equation was a direct precursor of
several fertile themes in twentieth century
epidemiology.

Ross’s mathematical theory went through two
major developmental phases. The first was pub-
lished as a lengthy appendix in the second
edition of his book ‘The Prevention of Malaria’,
in 1911(a). An abbreviated form of the argument
was published by Ross as an article in the same
year (19115, ¢). In this work he began to generalize
his approach beyond just the malaria situation,
and to discuss epidemiological problems in a
totally abstract form, calling them ‘happenings’.
In Ross’s (1911a) own words:

‘We shall deal with time-to-time variations not only of
malaria, but of all disease, and not only of diseases of
man, but those of any living organisms. Still further
as infection is only of one of many kinds of events
which may happen to such organisms, we shall deal
with happenings in general.’

Working from a set of simple assumptions,
Ross derived a system of equations defining the
incidence and prevalence patterns which would
be expected for different sorts of happening
within a host population. Most of this work was
presented in the language of the finite calculus,
as finite difference equations. In effect, the method
is an extension of the simple equation (1) above.
We find equations like the following, which can
be iterated in order to calculate the number of
infected individuals (z¢, zy+1) in successive dis-
crete time periods (from ¢ to ¢+ 1):

apt+1=({I—hyvar+HVz

zt+1=hvar+(I1—H)V z; 2
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where a is the number uninfected; z is the number
infected; A is the infection rate; H is the recovery
rate; v, V refer to births, deaths, immigrations
and emigrations of affected and unaffected
individuals.

The third and final development of this ‘theory
of happenings’ appeared in 1916 (see also Ross
1915, Ross & Hudson 1917), in the Proceedings
of the Royal Society, under the title: ‘An applica-
tion of the theory of probabilities to the study of
a priori pathometry’. This was the final flowering
of Ross’s theory, now clothed in the language of
the infinitesimal calculus, as a system of differen-
tial equations. An example follows:
dx[dt=h(1—x)—(N+r)x 3)
where x is the proportion affected among indi-
viduals in the population; dx/dt is the rate of
change of that proportion with tirie; N is the
birth rate among the affected individuals; 4 is the
infection, or ‘happening’ rate; and r is the rever-
sion, or recovery rate.

The development of Ross’s methodology is
clear from these equations: from simple arith-
metic product expression; to difference equations;
to differential equations.

The Essence of Ross’s

a priori Pathometry

What is, or was, so special about the content of
Ross’s theory, the theory ultimately known as the
a priori pathometry? The question is perhaps
most easily answered with reference to the
scientific background against which Ross pro-
duced his work. There was but a meagre tradition
of mathematical epidemiology at that time. Most
of the small literature drew directly upon a
technique for fitting symmetrical curves through
epidemic returns data, which had been suggested
by William Farr in his second Report as Registrar
General, in 1840 (see also Farr 1866, Evans 1876,
Brownlee 1906, 1915). The important thing is
that this previous work was based upon the
analysis of sets of actual data, in the form of
morbidity or mortality reports. It did not begin,
as did Ross’s theory of happenings, with assump-
tions about the mechanism of transmission of the
condition in the population. Ross described the
different approaches to the analysis of epidemio-
logical phenomena in the following way (Ross
1916, p 205): T

‘The whole subject is capable of study by two distinct
methods which are used in other branches of science,
which are complementary of each other, and which
should converge towards the same results —the a
posteriori and the a priori methods. In the former we

commence with observed statistics, endeavour to fit
analytical laws to them, and so work backwards to the
underlying cause (as done in much statistical work of
the day); and in the latter we assume a knowledge of
the causes, construct our differential equations on
that supposition, follow up the logical consequences,
and finally test the calculated results by comparing
them with the observed statistics.’

Needless to say, this latter method, dubbed ‘a
priori’ by Ross, fairly describes the structure of
the logical argument underlying the main use of
models by epidemiologists and health statisticians
today. It is fully consistent with what is often
termed the ‘hypothetico-deductive’ method, in
that deductive mathematical models become
tools for the testing of epidemiological hypo-
theses.

Originality of the Method and

Ross’s Claim on Priority

Ross (1916) claimed to have been the first to apply
this so-called a priori- method in epidemiological
research. From my reading of the literature of
that era, I would, in general, concur with his
claim. No one before —and few since — had so
systematically, and so philosophically adopted
this approach to the description of epidemio-
logical phenomena.

On the other hand, like most great ideas in the
sciences this one had its precursors, its other
proponents who groped in the same direction, yet
failed to define and utilize the method so clearly
as did Ronald Ross. At least two other authors
of the period, William Hamer and John Brownlee,
made efforts towards a similar methodology.

Hamer’s theoretical work is apparently re-
stricted to a single paper (Hamer 1906). Oddly
enough, the paper was never cited by Ross.
Hamer’s interest was in the periodicity of certain
epidemic phenomena, for example, the biennial
epidemics of measles. He found that he could
generate roughly comparable epidemic curves
by a simple algebraic manceuvre based on assump-
tions of constant ‘virulence’ and constant intro-
duction of new susceptibles (i.e. newborn children)
into the population. His method was crude, but
could be fairly described as a priori.

John Brownlee’s early contribution to the a
priori method was equally primitive. The majority
of his work was of the sort called ‘a posteriori’ by
Ross — that is, it was based upon the fitting of
various mathematical curve forms to epidemic
returns data. The shape of such curves, and
especially their asymmetry or skewness, was thus
of great concern to John Brownlee. In one of his
early treatments of this subject, Brownlee
(1906) approached the question of the asymmetry
of epidemic curves in a novel way:
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The striking fact is that epidemics in general hold a
course whose constants with very great regularity are
those of a single member of the large class of frequency
distributions [Pearson’s Type IV]... The investiga-
tion of this is much more easily attempted a posteriori.
The assumption that the infectivity of an orgarism is
constant, leads to epidemic forms which have no
accordance with the actual facts . . .’

There is a paradox in this passage. Brownlee
was here implicitly using an a priori methodology,
in that he speaks of constructing a model (or
‘epidemic form’) on the basis of assumptions
about the mechanism of transmission —yet he
calls the method ‘a posteriori’, in what is a direct
contradiction to the terminology later defined by
Ronald Ross. It is interesting that Ross, although
he cited this paper by Brownlee several times,
never commented either on Brownlee’s method,
nor on the conflicting terminology used.

Notwithstanding these other publications, Ross
can fairly be given the major share of credit for
the development of the a priori methodology.

Relevance of Ross’s Work to

Contemporary Epidemiology

Mathematical models of one sort or another are
extensively used in epidemiological work today.
Many of these models contain assumptions about
the mechanism of disease transmission, and are
designed to provide expected values for the
incidence or prevalence of some disease in a
population, which may then be compared with
actual observed values. As such, these models
are direct descendants of Ross’s a priori patho-
metry. In that sense, the fertility of Ross’s
approach, and its relevance to the science of
today, are obvious.

But there are subtler relics of Ross’s work in
today’s literature, which further emphasize the
heritage of Ronald Ross. For example, many
contemporary students of the epidemiology of
infectious disease employ a notation inherited
from Ross. Inoculation rates are frequently
given the symbol A, regardless of whether the
parasite under consideration be plasmodium
(Macdonald 1957, Dietz et al. 1974), schistosoma
(Macdonald 1965), or babesia (Mahoney 1969).
This symbol was introduced by Ross (1911a), as
the pivotal element in his general theory of
happenings — # may be an inoculation rate in a
particular instance, but it is the happening rate in
general.

In conclusion, we may return to that first
epidemiological model formulated by Ross, and
point out some of its recent descendants. We
recall that Ross’s first description of the trans-
mission cycle of malaria was a simple product
expression, defining the number of new malaria

4

infections delivered per month to a population
living in an endemic area:

Number of new infections=p-m-i-a-b-s-f )
This simple technique of stringing out the several
steps in a biological process, in a linear fashion,
is in itself a very useful one. Just as Ross began
his formulation of malaria in this manner, so
initial attempts at the quantifying of filariasis
(Beye & Gurian 1960) and schistosomiasis
(Hairston 1962) were phrased in this same way.

But Ross’s initial equation bears a more im-
pressive relationship to contemporary work than
just in notation or general structure. Its specific
structure was also a herald of future work.

In considering the condition of endemic,
stable malaria, Ross made the logical assumption
that the number of new infections, per unit time,
should be equivalent to the number of recoveries.
In Ross’s own notation the number of recoveries
per month should be: r-m-p, where r is the recovery
rate, and m-p equals, as before, the number of
persons infected with malaria. Setting this equal
to the number of new infections, we have:
r=iabsf 4)
However, fand b may be considered equal, being
but the man-biting habits of noninfectious and
infectious mosquitoes, respectively. (This was
recognized by Ross.) Thus:
r=i-a-b*s o)
This equation can be solved for a, the density of
the mosquito population in relation to man:

(©6)
Defined in this way, a is the ‘critical mosquito
density’, below which malaria cannot be main-
tained in the human population. This expression
(6) turns out to be very similar to one derived by
Ross’s successor, Professor George Macdonald
(1957), half a century later. Macdonald’s equation
for the critical density of mosquitoes was (here
we maintain Ross’s notation — see Appendix):

1 (—Logep)

by T Y
Two differences are evident between equations
(6) and (7). The first is in Macdonald’s substitu-
tion of the g parameter for Ross’s i. These para-
meters are similarly conceived, but apply to
different hosts: Macdonald’s g is the proportion
of infected mosquitoes (with sporozoites in their
salivary glands) which are actually infectious;
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whereas Ross’s i refers to the proportion of
infected persons who are actually infectious
(gametocytemic). Perhaps an ideal model should
incorporate both of these parameters.

The second difference between these expres-
sions is in Macdonald’s substitution of the pn/
(—Logep) term for Ross’s s. Both refer to the same
biological factor, the probability and duration of
survival of the mosquito after the extrinsic
incubation period of n days. Macdonald’s more
sophisticated handling of this parameter is based
on the assumption of a constant daily survival
rate (p) of mosquitoes in nature. This was a
crucial difference, however, as it allowed
Macdonald to investigate the effect of changes in
such survival rates, on the transmission of
malaria. This was of importance because
Macdonald was working in the era of residual
insecticides, when man at last had the capacity to
manipulate this daily survival rate factor in the
field.

Here again we witness evidence of greatness in
Ross’s idea —evidence of its durability, its
strength to last and form a base for the science of
future years. We need little wonder that towards
the end of his life, Ronald Ross, the man who
incriminated the mosquito in the transmission of
malaria, would write: ‘In my own opinion my
principal work has been to establish the general
laws of epidemics’ (Ross, date uncertain: see
Beaumont 1974). His work on the a priori
pathometry was indeed one of the great con-
ceptual advances in the science of epidemiology.

APPENDIX
Expression (7) in this paper is analogous to
equation (59) in Macdonald’s (1957) text.
According to Macdonald’s notation:

_—rLogep

a2 . b . pn

where: m=the anopheline density in relation to
man (Ross’s a); r=the recovery rate from a
single inoculum (see Fine 1975); p=probability a
mosquito survives through one day; a=the
average number of men bitten by one female
mosquito in one day (Ross’s b); b=the proportion
of mosquitoes with sporozoites in their glands
which are actually infective; n=time (in days) for
completion of the extrinsic cycle. It will be noted
that Macdonald’s notation is incompatible with
that of Ross, as used in this paper.

Ross used expression (6) in order to derive a
rough estimate of the minimal mosquito popula-
tion size which was consistent with the mainten-
ance of malaria in a human population. His
numerical estimates for the several parameters
were based more on intuition and general ex-

perience than on specific experimental results.
Taking r, the (monthly) recovery rate in man, as
approximately 0.2; b, the man-biting habit of
mosquitoes as 0.25; i, the proportion of gameto-
cyte carriers among infected individuals as 0.25;
and s the probability of mosquito survival through
the extrinsic cycle as 0.33 ; Ross calculated :

0.2 N

=0r 02503 ©

This estimate of 40 mosquitoes (per man, per
month) was repeatedly cited by Ross as a rough
guideline to the threshold size of the mosquito
population required for the maintenance of
malaria (Ross, 1908, 1910, 1911a, 1928, 1929).
This was his deductive proof that mere reduction,
and not necessarily total eradication, of mosquito
population would be sufficient to eliminate
malaria.
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